b34840977 - Diffstak 160/700F, 210-225 V, 1Ø, 50/60 Hz

Diffstak 160/700F, 210-225 V, 1Ø, 50/60 Hz



The compact water-cooled Diffstak pumps with an integral cooled baffle offer exceptionally clean pumping with very low backstreaming, reduced outgassing, and a reduction in the number of elastomer seals required for installation.

The Edwards Diffstak 160 (ISO160 inlet) design has been proven over many years with thousands of pumps installed. 

This pump is unvalved and has a copper compression gasket flange (ConFlat®).


The Diffstak is a three-stage fully fractionating diffusion pump with an ejector-type third-stage. The pump-body is water-cooled and made of stainless steel with a mild-steel nickel-plated base.
The interior jet system consists of a first, second and third-stage jet assembly with fractionating tubes. Above the jet system is a detachable first-stage jet-cap. The jet system is clamped together by a central tie-rod.
The boiler is located in the base of the pump. The pump fluid is heated and vaporized by plate-type electric heater(s) (one or two, this depends on the size of the Diffstak). The boiler has a fluid filler connection and a drain-plug. The electrical supply cables from the heater are brought out to a terminal-box at the bottom of the pump for ease of connection to your electrical supply.
Principle of Operation
Pump fluid is heated in the boiler to produce a vapor which passes up through the interior of the jet assembly and emerges from the jets as high-velocity Vapour streams. The vapor streams condense on the cooled pump-body wall and drain into the boiler at the bottom of the pump for recirculation.
A portion of system gas which arrives at the Diffstak pump-inlet is trapped in the vapor stream from the first-stage jet. The gases are compressed and transferred to the next stage. This process is repeated through the pump jet-stages until the gases are removed by the backing pump through the cooled backing-condenser.
The fractionating feature of the Diffstak design provides a means of purging the fluid charge of undesirable light fractions and foreign matter and the process helps significantly towards the attainment of a low ultimate vacuum.
The ejector jet also purges the fluid of any contaminants as it returns to the boiler and at the same time ensures a high critical backing pressure even when you use low vapor pressure fluids.

Technical Data

Pumping speed
nitrogen 760 l s-1
hydrogen 1410 l s-1
Min backing pump displacement* 12 m3h-1
Recommended backing pump RV12 or E2M18
Recommended fluid Santovac® 5
Fluid charge (dry) 250 ml
Inlet connection
160/700C ISO160
160/700F 8 inch
Backing connection NW25
Cooling water connection 10 mm compression fittings
Heater power 1.35 kW
Min cooling-water flow at 20°C 115 l h-1
160/700C 18kg
160/300F 20kg

* For maximum throughput



h11401002 - 500 ml

500 ml

h01700063 - Heater 210V 1000W KB65

Heater 210V 1000W KB65

Downloading pricing...
List Price:
Web Price:
Please contact customer care for pricing
h11401001 - 100 ml

100 ml

h01700107 - Heater 210V 350W KB15

Heater 210V 350W KB15

Downloading pricing...
List Price:
Web Price:
Please contact customer care for pricing